impressions arose at the inner surface of the shaft, i,e., traces of the pressure of the wedges. The identity
(visual) of the impressions bears witness to the uniformity of the distribution of the stresses.

In another model,a piston with a diameter of 50 mm was used, having values of A, v, and 3 equal ap-
proximately to 0.9, 0,87, and 0.45, respectively. The working pressureofthe compressed gas was around 2000
atm. The maximal radial stresses in this case, according to the calculation, around 1200 atm.

It must be noted that, in several hundreds of cycles of work, there was no case of breakdown of the system
or of damage to its elements,
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ANALYSIS OF STRUCTURE ELEMENTS TAKING
ACCOUNT OF MATERIAL DAMAGE DURING CREEP

V. A, Zaev and A. F. Nikitenko : UDC 539.376

Deformations: accumulated in the third stage of creep [1, 2] are neglected in the analysis of structure ele-
ments in the majority of cases. However, as follows from an analysis of experimental results [3], some struc-
tural materials disclose quite definite third sections of creep even for insignificant deformations on the order of

1

1-2%.

A standard computation of the stress—strain state for this scheme and the strength analysis of the struc-
ture elements under creep conditions do not take account of the fact [1] that cumulative damage, which exerts
substantial influence on the creep rate and results in redistribution of the stress field, precedes fracture.

An analysis of vessels stressed by internal pressure is presented below, in which the circumstances noted
above are taken entirely into account, The stress—strain state of the vessels and the lower boundary of the frac-
ture time are determined. It is noted that the elucidated method of solution is simpler and more effective in the
volume and complexity of the calculational procedures than the traditional methods [1].

Let a uniformly heated vessel (sphere, cylinder) be loaded by a constant internal pressure p with respect
to time. The equilibrium equations and boundary conditions have the form [1, 2]

30,/0r + ko, — 0p )ir =0, a < r < b; (1)

(@) = —p, 0:(b) = 0, (2)
where @ and b are the inner and outer radii, respectively, For a cylindrical vessel k=1, while k=2 for a spheri-
cal vessel, and oy, Oy are the principal stress tensor components, which are functions of the time and the co-
ordinate r. The remaining principal stress oy equals o, [2] for a spherical vessel in the case of central sym~
metry, and o, for a cylindrical vessel is determined from the standard assumption about no creep in the axial
direction [1, 2].

The creep strain rate tensor components are related to the displacement velocity vector components by
the known Cauchy relations [2], while the equation of continuity of the creep strain rate has the form [2]

Mg lor + (g —n)/r =0. (3)

We writeithe system of equations describing all three stages of material creep and taking account of the damage
process in time in the form [1, 4]
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n; = 4D, [o0; : : _ (4)
p™ (1 . p)a/(OC—i-l)

t 1/(m41)
p=[1—-(a+1)(m+1)§(b2dr] . (5)
: : ‘

where j=r, ¢, z for a cylinder, and j=r, ¢, 6 for a sphere. Here &, &, are homogeneous functions in the
stresses of degree (n+1) and (g+1) of the form &, =B,S{®*1/2, §,=5,8{8 T2 s, is the second invariant of the
stress tensor deviator (8,=(Y)(oy1—0 9> +(6,—03)?+(03~0()*]). The function p is related to the damage para-
meter « by the relationship

0 = (t — et ©
obtained by integrating:the kinetic equation [1, 4]
doldt = Dy/a® (1 — o)™, ofr, 0) = 0, wlry, t,) =1,

where B, By, m, n, g, o are material characteristics, tx is the time of the beginning of fracture front propaga~
tion [1, 2] determinedfrom (8) by using (5): '

iy
(o 4 1) (m 1) | Dydr = 1. 0
(1]

The time t* at which w =1 first at a certain point r, of the body, will be designated the lower boundary of the
body (structure element) fracture time,

The system (1)-(7) permits computation of the stress—strainstate of vessels loaded by internal pressure
at any time and determination of the lower boundary of the fracture time,

We seek the solution of the problem forumlated as
oj(r, 1) =03 (1)1 (r, 1) + C (r, 1); (®)
vi(r, ) =0} (r) F (1), 9
where v;are the displacement velocity vector components, and GJQ, Vg, f(r, t), C(r, t), F{t) are functions to be

determined. The zero superscript on the appropriate functions denotes that these latter depend only on the co-
ordinate r.

From (9) we have

n (ry 1) == T]?F (t)- (1.0)

We select the function f(r, t) from the condition that substituting (8), (10} in the coupling equation (4) the variables
could then bhe separated, For example, setting

= lum (1 — p )ty X (g e (11)

to the accuracy of an arbitrary function of the time, we obtain

] 4

sal/aes — FmX@  Comet

Taking the constant equal to one, we see that
FHX() =1, (12)

and the components 19, ¢} satisfy the steady creep equations [1, 2]. The solution of the steady creep problem for
the vessels under consideration which are loaded by the very same constant internal pressure in time will later
be considered known [2].

Taking the above-mentioned into account, it canbe seen that the field of displacement velocities (9) identically'
satisfies the Cauchy relations and the zero boundary conditions. The equation of continuity of the creep strain
rate (3) is also satisfied.

Substituting the stress fensor components (8) into the equilibrium equation (1), and the boundary conditions
(2), we see that they are satisfied if the function C(r, t) here satisfies the differential equation
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LoC | oof _
GO =0 (13)

at any time with the boundary condition
Cla, t) = —pll — f(a, 1)1, C(b,.1y = 0. (14)

The reason for the occurrence of two boundary conditions (14) for the differential equation (13) is per-
fectly evident. Taking into account that the principal stress vector o, equals the force of the internal pressure
on the bottom of a tube (or the principal stress vector 0p equals the internal pressure force on the surface of
a hemisphere), by taking account of (8) it can be shown that the second boundary condition for (13) is satisfied
identically.

Let us turn to a determination of the functions w(r, t) and X(t) in terms of which f(r, t) is expressed ac~
cording to (11). Using the energy theorem [2], we have

j T,ds = f o¥% (r, tynlF (1) dV. (15)
s v

On the other hand, taking into account that Vj{rs t)=ng(t), Vg are compatible with ng, and the external loads T‘J?

which are constant in time are in equilibrium with og, we obtain

X T?;ds = F (1) gagngdv;. (16)
s v
We have from a comparison between (15) and (16)
{7, t)oiniaV = { ofnlav. (17)
v . v
Taking into account that olj)ng =(n+1)3!, and applying the theorem of the mean to the:first integral in (17)
{1, notav =T (1), 9 [ ©av, 18)
4 v
we finally obtain that at any time the equality
o, =1, 0 <t <t
should be satisfied, which permits determinat_ion in c_ombination with (11) of the time function X(t):
X() = (1 —pets, B = D), 0. (19)
Substituting (8) into (5), we obtain after the simplest manipulations with (11) taken into account
n ' t
le(i —2)Pdz = — [(m 4 1) 1] s‘ X-EF0my, (20)
1 1]
and taking (11) into account we have from (17)
S‘ [Hm (1— }L)“/(“"'l)]l/n(ngV — xu» S‘ngV. (21)
14 14
Here
—g—1 1 -
p= ol oo 2t =@+ ) (m+ O]

For the integrationin (20) it must be taken info account that 1 =p (r, t) > 0 for 0=t< tx, u(ry, tx) = 1, X(0) =
1, X(tx) > 0, This imposes certain constraints on the material characteristics which are not generally too
strict.

It follows from the above that the problem (1)-(7) formulated above for creep theory with the material

_ damage taken into account simultaneously can be reduced to a steady creep problem. In order to obtain the
desired solution g}, n; the known steady creep solution ad, n? should be multiplied by the functions f(r, t) and
F(t), respectively., The hydrostatic component is found from the solution of the differential equation (13) and the
boundary condition (14).
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.12 6, kgmm®|’

Fig. 1

2z Sy, kg/mm?

/e 6., kg/mm

-12

Fig. 2

One of the known numerical methods of solving the system (20}, (21) is required tc determine the functions
f(r, t) and F(t) which are expressed in terms of u (r, t) and 7 (t) according to (11) and {12),

Substituting (8) into (7), we find the lower bound of the fracture time, after which propagation of the frac-
ture front starts from the point r =rx as most stressed

t

[ 1 (s 91 d0 = 2 (1),
0

(22)

Since the function f(r, t) is related to the damage parameter w{r, t), it then follows from (8) that the latier
exerts substantial influence on the stress field by contributing to its redistribution from the time of load appli-
cation to the beginning of fracture. Evidently f(r, 0)=1, C{r, 0) =0, andtherefore, the stress field (8) agrees with
the steady distribution crg for t=0.

Limiting ourselves to the case of a material becoming soft during creep, i.e.,, when o =0, we determine
p and @ fromthe system (20) and (21) as follows. Using the notation
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j"pj—(mﬂ)ud.c =u, u(0)=0, -%f =1 for t=0,

¢
B=mlln +mn—g—1), v=m+mn — g — 1))/nm + 1),
® = mlg + )in{m + 1), y = m/n{m + 1)

and substituting p (r, t) from (20) into (21), we obtain

| Sd)g (1 —= u)BdV = (dufdty v f DGV, (23)
v * v ‘

We seek the solution of (23) in the form of a power series in t:

u= X bt*, b=1.

h=1
Then we have for u(r, t) and F(t)
p"" =1 +h§ Byt*; 249

F=1 (25)

where
5 i 45,6 b N
By= % (=) 780 B =3 piipgion;
i=1 n=j
B =0 for k<<i, i>1; B =(m+ 1) DOhb,;
o 4 T
D=3 20 g, o = 3 DD,
n=1

=1

d=0 for k<<i, i>1; dP=(k+1)bpsq;

A;‘n is the number of permutations of m elements n at a time. After standard operations, we obtain a formula
from which we determine the expansion coefficients By and Dj:

D, f DYV = g DB, dV.
v v

Let us write down some of the first coefficients:

Dy = —pv/i}, By=—Ppvit,
(v % B—=-DMT 1
D= BE [+ 2] GGk
2 M 1| 1

ne B o

where

b= [OI®PaV S(D';dV / ( g dngcpgdv)’,
v 14 v

and % is determined from the expression

B =[m+ )OO = [(m+ )T,
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where
— 26
@Y = fcb‘;q:gdv / 5 UV, (26)
v 12

Direct computations show that a perfectly good approximation can be obtained in determining the stress—strain
state if the sums of the infinite series (24) and (25) are approximated by the expressions

. i v
=g ()

~m/n t \¥ (28)
y./ =(1_F) .

Ll

(27)

Diagrams of the stress distributions in a thick-walled tube at different times are represented by solidlinesin
Fig, 1. The computation was performedby means of the dependences (8) by using (27) and (28), The material charac-
teristics had the values: A=b/@=2, n=g=4, m=3, B, =9.,4-107%, opla)=—12 kg/mm?, Here the stress distribu~
tion diagrams obtained in a direct computation by using an electronic computer are represented by dashed lines
for comparison, The time interval between 0 and t was here divided into bands At and the computation was per-
formed by a standard method [1].

Substituting (27) and (28) into (22), we obtain the following expression:
ty = 221 — (1 — £ (@ B)™] (29)

for the time of the beginning of fracture front propagation. In particular, tx calculated from (29) was 473 h, but
t* =488 h in a direct computation, It is seen hence and from a comparison of the stress distribution diagrams
represented in Fig. 1 that the method elucidated to compute the stress—strain state of high-pressure vessels and
to determine the lower bound of the fracture time yields a perfectly good approximation to actuality. Evidently

it is much simpler and more effective in the volume and complexity of the calculational procedures as compared
with traditional methods [1, 2].

In the particular case when the material characteristics are associated with the relationship (8 =1)

m=n/2—(n—g) foa l<n—g<2,
m = n/2 for n = g,

the system (20) and (21) has the simple solution

30

™ = (1 — /20). (31)

This same result can be obtained directly from (24) and (25). The lower bound of the fracture time is deter-
mined from (29) by replacing ¥ by v(v =v for 8 =1).

It turns out that in the case B = 1 a perfectly satisfactory approximation can be obtained in the computa~
tion of the stress—strain state if the sums of the infinite series in (24) and (25) are approximated by (30) and (31)
The appropriate stress distribution diagrams are represented by solid lines in Fig. 2 for different times com-
puted by means of (8) by using (30) and (31) (the dashed lines arethe sameasinFig,1). The lower bound of the
fracture time, as determined from (29) where v was replaced by v, was 461 hrs.

Let us note that a lower bound in the fracture time t« ET?,: is obtained in [5] on the basis of an investigation
of the fracture front propagation in an aribtrary body by using a simple cumulative damage law (which is equiva~
lent to the particular case 8 =1) which agrees completely with (29},

It is seen from relations (8), (11), (19), (30), (31) that the stress intensity distribution diagram in the case
B =1 intersects an analogous steady creep diagram at a point with coordinate r =T at any time 0 < t=ts, Le,,
the stress intensity at this point is not redistributed during creep, but remains equal to its initial value

Sy (1) 8y = S3(r), 8, (r, 0) = S5 (r).
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The coordinate of this point is determined from (26), and is independent of the time. In particular, for a sphere

T f3g+n + 8 AnEs/n __ g n/(3g+3) . (32
=[( n+3 )(K(3g+"+6)/ﬂ_1 I<n—g<2)y )

and for a cylinder

r (g +2) (W™ — 1) n/(2g+2)
T T | T p@erem_g

(I<n—g<2). (33)

It is seen that the coordinates (32) and (33) differ insignificantly from the corresponding coordinates for inter-
section of the elastic and steady distribution diagrams, and for n — « agree exactly withthe coordinates for intersec-
tion of the elastic stress intensity distribution with the ideal plastic distribution. In combination with (30) and (31),

this result affords a possibility of involving an electronic computer (or using it minimally) to compute the stress—
strain state of high-pressure vessels by means of (8) and (9) even in the case 8 # 1 as an approximate estimate
during design. The lower bound of the fracture time is determined from (29) or from the expression t4 =tk pro-
posed in [5]. In combination with (30), (31) and (29), the relationships (8) and (9) yield the exact solution for

B =1-
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ST. VENANT PRINCIPLE FOR STRONGLY ANISOTROPIC
ELASTIC MEDIA

Yu. A. Bogan : UDC 539.1

The presence of strong anisotropy in modern composites (consequently, large parameters are present in
the generalized Hooke's law for the average stresses) resultsinlimit models being characterized by the pheno-
menon of "propagation" of the stress state [1].

In this connection, the question occurs asto what degree does the St. Venant principle remain valid for
media with inextensible fibers? As is shown below, exponentiality decreasing the potential strain energy with
distance from the domain of self-equilibrated load application occurs [2] for media with inextensible fibers un-
der definite conditions; however, it is hence generally impossible to make a deduction about the exponentiality
of the damping with distance from the loaded section.

Therefore, the St, Venant principle must be formulated in a weakened, integral form without local estimates
of the stréss state of the structure for the application of the principle to media with inextensible fibers.

1. Without pinpointing any specific model of alinearly elastic composite, let us take the generalized Hooke's
law relationship in the form

oy = Apeg + Apey, Oy = Aty + Agtn, Tz = Gvn, (1.1)
where £ =xcosa=y sina;n=—xsin @ + y cos @;0=a <7 is some constant angle, and (x, y) are cartesian or-
thogonal coordinates. Let us put _

e = AyGY, dyy = AypGY, d = ApGt,

EE = 0t G, on = on G, T—E’ﬂ = Tt Gt
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